
A Steady State Phase Change Problem* 

By A. Solomon 

In a previous paper [4] the solution to the Stefan problem for a one-dimensional 
semi-infinite slab with constant boundary and initial conditions was shown to be 
given by the limit of solutions to a nonlinear parabolic equation for the "specific 
internal energy." In this paper we obtain the same result for the Stefan problem 
in a bounded two- or three-dimensional domain, with constant boundary conditions. 
This result further justifies the application of the methods of [3], [4] to the Stefan 
problem in higher dimensions. 

In Section 1 the problem to be solved is stated, and a simple solution given. In 
Sections 2, 3 this solution is shown to be obtainable from a limit of solutions to a 
related problem for the specific internal energy, as well as a solution to a related 
problem in the calculus of variations. 

1. Notation and Statement of the Problem. Let ? be a bounded region of the 
x, y plane having a smooth boundary F and consisting of material which undergoes 
a change of phase, from Phase "I" to Phase "II," at the critical temperature TC 
(see Fig. 1); our results apply as well for a three-dimensional region. (Phases I and 
II can represent "frozen" and "melted" states of the material.) Let H be the latent 
heat of the material which is lost in the transition from Phase II to Phase I, cl, K1 
and C2, K2 the specific heat and conductivity of Phase I and Phase II material, re- 
spectively, and Ki = Ki/cip, i = 1, 2, where p is the density of Phase I and II 
material, which we assume to be the same. 

P PASE I / PHASE II 
To < T To>T 

FIGURE 1. The domain ? 

Suppose that the temperature T of the boundary F is given by the function 

(la) T(o) = TO(o) 

(with o- the arc length on F) and maintained at this temperature for all time. T? is 
to be a bounded and piecewise continuous function of o- assuming values above and 
below T, Then the steady state temperature T(x, y) at points (x, y) of ? is har- 
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monic throughout 4 except across certain curves C in S marking the interface be- 
tween Phase I and II materials. At C, 

(lb) T-T, 

(Ic) K1lgrad T-j = K2f grad T+j, 

where T-, T+ denote the limiting temperatures at C from within the Phase I and 
Phase II regions of 4, respectively. 

We wish to determine a function T(x, y) and curves C, which satisfy (la, b, c) 
for given TO. This can easily be done by a simple nonlinear change of variables. For 
let 

(2a) K(,) ,IKl_ , for 3 < T, (2a) 
kW~~~K2 for I> Te 

and 

rT(x ,y) 

(2b) U(x, Y) =o K(i3)d3 

then 

(2c) Uxx + U,X = 0 

in the Phase I and II regions, while at C [grad I U+ grad U-j, with U-, U+ the 
limiting values of U on C from within the Phase I and II regions, respectively. 
Thus U can be considered harmonic throughout 4. On r, 

fT?D (or) 

(2d) U (af) =U (a) = K(O)d!O- 

A harmonic function U(x, y) satisfying (2c, d) exists and can be found using 
well-known methods of potential theory (see [1]). Since the function K of (2a) never 
vanishes, one can solve (2b) for the function T(x, y) in terms of U(x, y), which 
obeys (la, b, c); moreover the interface curve C on which T- T, is simply the 
equipotential curve for U on which 

U= f K(O)d 

2. A Related Problem for "Energy." Define T and a function K as functions of 
a new variable e by 

T, + (e-H)/cl, for e < H; 

(3) T(e) Tc for H < e < 2H; 

T, + (e - 2H)/c2, for e > 2H; 

rKi, for e < H; 
|1(e) , for H< e<H+ E; 

(4) K(e)- 6, for H + e < e < 2H-e; 

| 2(e), for 2H-E < e < 2H 

tK2, for 2H< e 
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where E, 6 are any (small) positive numbers, and q1, k2 are any smooth monotonic 
functions such that K(e), K'(e) are continuous. Let E0(o-) be defined on F in such a 
way that T(EO(o-)) = TO(o) (by (3)). Consider the boundary value problem 

(5a) (K(e)e.)x + (K(e)e,) , = 0on S 
(5b) e = EO on P. 

We claim that an analytic solution of (5a, b) exists, which as e, a tend to zero, con- 
verges to a function yielding by (3) a piecewise harmonic function T obeying 
(la, b, c). 

Let 

(6) F(e) = j K(3)d/; 

then as a function of x, y, F obeys (by (5a, b)) 

(6a) Fxx + FUyy0 on S, 

(6b) F(of)=j K(f)do on 

Under the assumptions on EO, K, such a function F exists, and since F'(e) = K(e) x 0, 
e and T may be found by (6), (3). 

The equipotential curves for F on which e, F are constant, are Jordan arcs join- 
ing points of P. Let S-, S?, S+ be the subsets of S in which e < H, H < e < 2H, 
e > 2H, respectively. These regions are bounded by smooth Jordan arcs or sets of 
curves OH, C2H in S on which e = H, F = K1H, and e = 2H, F = K1H + f HK(:)dg, 

respectively. The regions clearly depend on E, 5. 
Let e tend to zero, with K(e) converging in a decreasing manner to the piecewise 

constant function 

K1, for e < H; 

(7) K(e)= ,a, for H < e < 2H; 

tK2, for e>2H; 

by Dini's theorem F converges uniformly on P to a continuous function given by 
(6b) (see [2, p. 106]). Consequently, as e tends to 0, F converges uniformly on S + 
F to a harmonic function satisfying (6a, b) with K defined by (7). By Harnack's 
theorem the domains 2+, S?, ?- and curves CH, C2H converge to domains S+, ?V, S- 
and smooth Jordan arcs CH, C2H as above. From (6), 

F = Kle < KJH on ? ; 

(6c) K1H < F = K1H + a (e-H) H(K1 + 6) on ?0; 

H(K1 + 6) < F = H(K1 + 6) + K2(e 2H) on C+, 

and 

K1H on C; 
(6d) F- 

K 

H(Ki + 6) on C2H 

From (6c), 
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Kilgrad el , in S- ; 

(8) gradFj I (Ki +8)jgradel, in ?0, 

K21gradeI, in S+. 

Since F(x, y) is constant on CH it increases as the point (x, y) crosses CH from ?- 
to ?0. Let e-, e? be the limiting values of e on CH from within ?- and ?0 respectively. 
Since F is harmonic throughout S, 

(9a) Igrad eo I(Ki ? b) = Kilgrad e-l 

on CH (Eq. 8). Similarly, letting e+, e? be the limiting values of e on CH, C2H, from 
?C+, ?0 respectively, 

(9b) I grad e+jK2 = (K+ S) I grad e?I; 

thus by (6), e is harmonic within ?0, ?-, ?+, continuous throughout ?, and has a 
discontinuous gradient across CH, C2H. 

Let a tend to 0. By reasoning similar to that above, K(e) converges to the step 
function 

Kl, for e < H 

(10) K(e)= 0, for H < e < 2H; 

K2, for e>2H, 

and F converges uniformly on ?+ and P to a harmonic function obeying (6a, b). 
Moreover by (5d), CH, C2H converge to a common curve C, on which F = HK1, 
while ?0 tends to the empty set, and S+, ?- tend to sets ?II, ?I, on which F > KJH 
and F < K1H respectively. The functions e converge to a function harmonic on 
?I" and ?I, and 

(1 1) F= JKle, on 

KH?+ K2(e -2H), on 2II . 

For e+, e- the limiting values of e at C from within ?II, ?1, respectively, 

(12) e-=H,e+=2H, on C. 

Moreover, since grad F is continuous over ?, 

Kilgrad e- = K2lgrad e+I, on C 

and e = EO on P. Using (3), we now obtain a function T(x, y) which is harmonic 
on ?I, ?II and obeys (la, b, c). T is the solution to the steady state problem. 

Since in the limit for e= = 0 O, F (and thus T) is determined uniquely by the 
given boundary values of T on F, T is uniquely determined. 

3. A Related Variational Problem. As a harmonic function continuous on r, F 
is under suitable conditions the solution to the problem of minimizing the Dirichlet 
integral over ? among all functions obeying (6b) (see [1]). This implies by (3), (6), 
that the solution T to (la, b, c) is that function minimizing the integral 

I-1 (K (T7))2(T$2 + T02)dxdy 
p2 
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with K(T) defined by (2a), among all piecewise smooth functions T obeying (la). 
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